Насколько окна ПВХ холоднее стены — теплопроводность


Теплопроводность пластикового окна,теплопроводность стеклопакета по сравнению со стеновыми материалами

Чем лучше утеплен дом, тем меньше нужно его топить в морозы.
Что выгоднее: основательно утеплить дом или не тратиться на это? Деньги вы сэкономите, но зато потом много лет будете зимой, как говорится, обогревать атмосферу, то есть выбрасывать деньги на ветер, в буквальном смысле слова.

Итак, прежде всего нужно разобраться, сколько тепла теряет ваш дом (это относится и к вновь проектируемому жилищу). Если посмотреть на жилой дом через прибор ночного видения, можно увидеть, что называется, своими глазами, как он теряет тепло — через стены не очень сильно, через крышу еще меньше; сильные выбросы тепла идут через окна; в землю тоже уходит тепло, хотя наш прибор этого не покажет.

Тепло уходит через (синие участки «холодные», а красные «горячие»):

  • Стены ~ 30%;
  • кровлю ~ 14%;
  • пол ~ 12%;
  • окна ~ 44%.

Важно! Только 30% от всех потерь через окна происходит из-за конвенции (переносу тепла воздушными потоками внутри стеклопакета) и теплопередачи (переносу тепла по твердому материалу окна), а 70% от всех потерь через окна происходит из-за длинноволнового инфракрасного теплового излучения через стекло, которые можно и нужно предотвратить, а о том, как это сделать, можно узнать из данной статьи.

От чего зависят эти тепловые потери

Они тем больше, чем больше разность температур в доме и на улице. Они тем меньше, чем выше теплозащитные свойства стены (или, как говорят, ограждающей поверхности). Стена сопротивляется утечке тепла, поэтому ее теплозащитные свойства оценивают величиной, называемой сопротивлением теплопередаче.

Сопротивление теплопередаче показывает, какое количество тепла уйдет через квадратный метр стены при определенном перепаде температур (или наоборот: какой перепад температур возникнет при прохождении заданного количества тепла через квадратный метр стены).

Формула проста, как закон Ома:

  • R=д/q

где:

  • q — это количество тепла, которое теряет квадратный метр ограждающей поверхности (стены, крыша и т. д.). Его измеряют в ваттах на квадратный метр (Вт/м2);
  • д — это разница между температурой на улице и в комнате (°С) и, наконец;
  • R — это сопротивление теплопередаче (размерность (м2•°С)/Вт).

В качестве примера: сколько будет стоить комфорт зимой хозяину остекленной и идеально утепленной лоджии? Не будем учитывать потери на нагрев свежего воздуха из форточки и потери тепла через стены, пол и потолок. Только через самое лучшее на сегодняшний день остекление с R=0,8 площадью 10 кв.м при разнице температур от -20 до +20 будет теряться 0,5 кВт в час, т.е. теплый пол накрутит примерно 360 кВт в морозный месяц!

Подобно тому как электрическое сопротивление R характеризует способность проводника препятствовать прохождению электрического тока, так и тепловое сопротивление R показывает, насколько поверхность, ограждающая жилой объем, препятствует утечке тепла наружу.

Эта аналогия не случайная — мы имеем дело с законом подобия: прохождение тока под действием разности потенциалов и теплового потока через вещество под действием разницы температур описываются одинаковыми математическими уравнениями.

Если речь идет о многослойной стенке, то сопротивления отдельных слоев просто складывают (в точности как последовательные сопротивления в электрической цепи). Например, сопротивление стены из дерева, обложенного кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

  • R(сумм.) = R(дер.) + R(возд.) + R(кирп.).

При проектировании и строительстве жилых зданий начиная с 2003 года необходимо соблюдать требования СНиП 23-02-2003 «Тепловая защита зданий», иначе построенное здание не будет разрешено заселять и использовать. Поскольку требования к сопротивлению стен теплопередаче по этому документу очень высокие, в последнее время разрабатывается значительное количество строительных материалов, обладающих низким коэффициентом теплопроводности.

Это всевозможные утеплители, газосиликатные и пенобетонные блоки, поризованная и сверхпоризованная керамика, многопустотные крупногабаритные блоки. Для нашего Урало-Сибирского региона сопротивление теплопередаче для внешних стен жилых домов должно составлять от 3,5 (м2•°С)/Вт (k = 0,29 Вт/(м2•°С)). До 1995 года требуемое сопротивление теплопередаче окон и балконных дверей в жилых домах составляло 0,45 (м2•°С)/Вт (k = 2,22 Вт/(м2•°С)). Согласно современным нормам требуемое сопротивление теплопередаче окон составляет 0,6 (м2•°С)/Вт (k = 1,67 Вт/(м2•°С)).

Коэффициент теплопроводности полнотелого керамического кирпича равен в среднем 0,6 Вт/(м2•°С), а силикатного 0,8 Вт/(м2•°С). Если рассчитать требуемую толщину стены, сложенной только из этого кирпича, то для керамического кирпича она составит от 2,1 метра, а для силикатного — от 2,8 метра. Это уже не коттедж, а средневековая крепость! А, например, для газосиликатных блоков с коэффициентом теплопроводности 0,14 Вт/(м2•°С) толщина стены будет составлять всего 50 сантиметров.Однако, прочность газосиликатных блоков такова, что их нельзя использовать как несущий материал.

Лукавые рекламщики окон пытаются облукавить покупателя: «В новой кухне-гостиной никогда не будет холодно: окно из профилей «таких-то» с 5-ти камерным строением и системной глубиной 70 мм по теплотехническим характеристикам эквивалентно кирпичной стене толщиной 90 см!» Увы, но самое лучшее современное окно примерно в три раза «холоднее» стены, иначе стеклянные стены перестали бы быть экзотикой и расточительством в наших домах.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Роль окна из ПВХ профиля в теплозащите помещения

На сегодняшний день большая часть предприятий, занимающихся изготовлением пластиковых окон и дверей использует 3-х камерный профиль (различных производителей) и двухкамерный стеклопакет (далее с/п) (4М—10—4М—10-4М). Согласно ГОСТ 30674-99 «Блоки оконные из поливинилхлоридных профилей» сопротивление теплопередаче оконной конструкции изготовленной из 3-х камерного профиля с двухкамерным с/п 4М—10—4М—10—4М (наиболее распространенный и часто используемый с/п) составляет 0,51 (м2•°С)/Вт.

Величина справочная, однако реально значения для данных конструкций варьируются в пределах 0,53-0,56 (м2•°С)/Вт. Какими же путями возможно увеличить сопротивление теплопередаче окон пластиковых хотя бы до сегодняшних 0,6 (м2•°С)/Вт, не говоря уже о быстром устаревании строительных требований и учитывая 20-40 летнюю жизнь окна, при этом не увеличивая значительно стоимость всей оконной конструкции?

23 ноября 2009 года принят Федеральный закон об энергосбережении и повышении энергетической эффективности (№ 261-ФЗ). Предполагается, что этот закон поможет создать правовые, экономические и организационные основы стимулирования энергосбережения и повышения энергоэффективности. Коснется он и установки оконных систем. Но обо всем по порядку.

1 мая 2010 принят приказ, который утверждает требования по энергетической эффективности для зданий, строений, сооружений. Обновленный закон предписывает заменить окна на энергоэффективные (с приведенным сопротивлением теплопередаче 0,56-0,8 (м2•°С)/Вт). На это законодатель выделил свой срок: с 2011 до 2015 гг. Если говорить простым и понятным языком, то в течение четырех следующих лет окна должны стать теплее на 48%.

Требования к окнам будут касаться не только муниципальных заведений, строящегося жилья, но и уже построенных домов. Подталкивать нас к этому будут требования к установке счетчиков энергопотребления. По предварительным подсчетам, с 1 января 2011 г. россияне, не установившие счетчик, будут переплачивать за воду, газ и тепло почти в двойном размере, а с 2012 — и вовсе в четырехкратном.

Такая практика стимулирования широко распространена в Западной Европе, где собственники домов, неоснащенных счетчиками, оплачивают «коммуналку» по ставкам в несколько раз больше.

Вдохновленные перспективами, будем разбираться: окна пластиковые состоят из двух основных элементов: ПВХ профилей (рама, створка, импост, штапики и т.д.) и с/п. Именно эти составляющие определяют значение сопротивления теплопередаче всей оконной конструкции.

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри — вспененный утеплитель или минеральная вата.

Сопротивление теплопередаче оконного ПВХ профиля

Согласно ГОСТ 30673-99 «Профили поливинилхлоридные для оконных и дверных блоков»:

  • 3-х камерные ПВХ профили — 0,6-0,69 (м2•°С)/Вт, например;
  • Exprof practica монтажная глубина 58 мм с армированием — 0,63 (м2•°С)/Вт;
  • 4-х камерные ПВХ профили — 0,7-0,79 (м2•°С)/Вт, например;
  • LG Наusys L-600 монтажная глубина 60 мм с армированием — 0,74 (м2•°С)/Вт;
  • 5-и камерные ПВХ профили — более 0,80 (м2•°С)/Вт, например;
  • Exprof profecta монтажная глубина 70 мм с армированием — 0,81 (м2•°С)/Вт.

Как видно из приведенных данных значение сопротивления теплопередаче для среднего 5-ти камерного профиля по сравнению с 3-х камерным возрастает всего на 16%, при этом только 30% площади окна закрывается ПВХ профилем, остальное 70% закрывает с/п.

Получается, что реально сопротивление теплопередачи может возрасти на 16% только у 30% всей площади пластиковых окон, ну а стоимость 5—и камерного профиля по сравнению с 3-х камерным возрастает значительно.

Но если делать «как себе», не стоит пренебрегать всеми составляющими окна, и если есть возможность, следует выбрать лучшие профиля, например, приведенное сопротивление теплопередачи для системы пятикамерного оконного профиля фирмы LG Наusys L700 (монтажная глубина 70 мм), имеет коэффициент теплопередачи 0,91 (м2•°С)/Вт с учётом установленного стального армирования, что вообще не имеет аналогов среди подобных изделий у конкурентов!

Что такое теплопроводность окна и от чего она зависит?

Если максимально упростить, то теплопроводность окон ПВХ – способность профильной конструкции с закрытыми створками удержать внутри помещения определенное количество энергии. Однако такого определения недостаточно, что понять суть процесса. Ведь через те же стеклопакеты утечка тепла происходит разными способами:

  • 30% потерь энергии происходит за счет конвекции внутри стеклопакетов и воздушных камер и теплопередачи через твердые компоненты оконных или дверных блоков;
  • 70% тепла уходит за пределы помещения вместе и инфракрасными волнами.

Этот простой анализ позволяет понять, как можно существенно уменьшить утечку энергии. Поскольку инфракрасные волны проходят через стекла, именно этим зонам оконных и дверных блоков требуется уделить двойное внимание. Ведь стеклопакеты занимают самую большую площадь в оконных проемах и через них уходит максимальное количество тепла. Статистика показывает, что значительно повысить энергоэффективность профильных конструкций можно в том случае, если получится задержать инфракрасные волны.
При этом нельзя оставлять без внимания ПВХ-системы, так как коэффициент сопротивления теплопередаче стеклопакетов в определенной мере зависит от их особенностей. Например, форма сечения профилей влияет на глубину посадки и максимальную толщину стеклопакетов. От упомянутых размеров зависит суммарная энергоэффективность окон. Кроме этого, хорошие профили замедляют процесс теплообмена по периметру световых проемов и распространение холода от остывших стен. Эти процессы взаимосвязаны и становятся причиной снижения температуры во внутренних помещениях.

Последний фактор, который оказывает влияние на уровень теплопроводность окон – герметичность. Однако этот параметр достаточно сложно рассчитать математически. Поэтому заказчику окон достаточно знать, что для обеспечения герметичности требуются качественная фурнитура и армирование профиля. Также нужно уделить внимание качеству установки. Если монтаж выполнен не по правилам, возможна разгерметизация конструкции по периметру рам. Подробнее о требованиях к установке читайте на ОкнаТрейд.

Как вычислить общую теплопроводность окна

Определить точное сопротивление теплопередаче окон достаточно просто. Для этого потребуется использовать теплотехническую информацию о профилях и стеклопакетах. Причем нельзя ориентироваться только на один из коэффициентов. Чтобы получить достоверные данные, требуется учесть теплопроводность створок, рам и стеклопакетов. При вычислениях потребуется применить:

  1. R sp – коэффициент стеклопакета.
  2. R p – коэффициент оконного переплета.
  3. β – отношение площади светопрозрачной части конструкции к общей площади окна.

Теплопроводность окна с учетом этих данных вычисляется по формуле:

R= R sp×R p/((1- β)×Rsp + β×R p)

У разных профилей и стеклопакетов коэффициенты отличаются. Не существует среднего значения. Ведь в таком случае все окна имели бы одинаковую способность удерживать тепло. Точные значения коэффициентов приведены в этой статье в разделах о ПВХ-системах и стеклопакетах. Чтобы вычислить площадь переплета, нужно умножить длину составных элементов створок и рам на ширину профилей, а затем суммировать полученные значения. Площадь остекления равна площади световых проемов.

Сопротивление теплопередаче оконного стеклопакета

Согласно ГОСТ 24866-99 «Стеклопакеты клееные строительного назначения» для с/п с различной шириной алюминиевой дистанционной рамки сопротивление теплопередаче составляет:

  • 6М-14-6М (1-кам. с/п 26 мм) — 0,31 (м2•°С)/Вт, по протоколу испытаний КСК (Каменская стекольная компания) — 0,41 (м2•°С)/Вт;
  • 4М—16—4М (1-кам. с/п 24 мм) — 0,32 (м2•°С)/Вт, по протоколу КСК (с рамкой ПВХ) — 0,39 (м2•°С)/Вт;
  • 4М—10—4М—10-4М (2-х кам. с/п 32 мм) — 0,47 (м2•°С)/Вт, по протоколу КСК — 0,48 (м2•°С)/Вт;
  • 4М—12—4М—12-4М (2-х кам. с/п толщиной 36 мм) — 0,49 (м2•°С)/Вт;
  • 4М—16—4М—16-4М (2-х кам. с/п толщиной 44 мм) — 0,52 (м2•°С)/Вт.

Как показывают эмпирические данные, при дальнейшем увеличении межстекольного пространства (ширины дистанционной рамки) величина сопротивления теплопередаче остается практически без изменения, а при увеличении этого размера до 50–60 мм, сопротивление теплопередаче с/п начинает снижаться. Таким образом, увеличение межстекольного пространства позволяет реально повысить значение сопротивления теплопередаче на ~ 10%.

Значительно повышает сопротивление теплопередаче с/п — использование стекла со специальным серебряным теплосберегающим покрытием (Planibel Top N+), так называемого И-стекла. Это покрытие обеспечивает прохождение в помещение коротковолнового видимого солнечного излучения, но препятствует выходу из помещения длинноволнового теплового излучения, например от отопительного прибора: серебро великолепно отражает 96% длинноволнового инфракрасного теплового излучения от батареи обратно в комнату, а это не много ни мало 70% всего домашнего тепла.

Придание энергосберегающих свойств стеклу связано с нанесением на его поверхность низкоэмиссионных оптических покрытий, в связи с чем само стекло получило название низкоэмиссионного. Именно эмиссивитет поверхности определяет излучательную способность (у обычного стекла составляет e = 0,83), а следовательно, и способность как бы «отражать» обратно в помещение тепловое излучение.

При этом стекло с оптическим покрытием, имеющим значение эмиссивитета e = 0,04, «отражает» обратно в помещение свыше 90% тепловой энергии, выходящей через окно. Помимо улучшенных теплофизических характеристик, такое стекло имеет хорошие оптические параметры. Оценка нейтральности по шкале от 0 (черный) до 100 (нейтральное) показывает, что стеклопакет из обычного стекла имеет этот коэффициент на уровне 99, а с И-стеклом — порядка 98, т.е. практически стеклопакеты неотличимы визуально.

Согласно ГОСТ 24866-99 «Стеклопакеты клееные строительного назначения» для однокамерных и двух камерных с/п с различной шириной алюминиевой дистанционной рамки сопротивление теплопередаче составляет:

  • 4М—8—И4 (1-кам. с/п толщиной 16 мм с И- стеклом) — 0,51 (м2•°С)/Вт;
  • 4М—10—И4 (1-кам. с/п толщиной 18 мм с И-стеклом) — 0,53 (м2•°С)/Вт;
  • 4М—12—И4 (1-кам. с/п толщиной 20 мм с И-стеклом) — 0,56 (м2•°С)/Вт;
  • 4М—16—И4 (1-кам. с/п толщиной 24 мм с И-стеклом) — 0,59 (м2•°С)/Вт, например, по протоколу испытаний КСК (с рамкой ПВХ) — 0,64 (м2•°С)/Вт;
  • 4М—16Ar—И4 (1-кам. с/п толщиной 24 мм c И-стеклом и Аргоном) — 0,66 (м2•°С)/Вт, например, по протоколу испытаний КСК (с рамкой ПВХ) — 0,70 (м2•°С)/Вт;
  • 4М—10—4М—10—И4 (2-х кам. с/п толщиной 32 мм с И-стеклом) — 0,64 (м2•°С)/Вт;
  • 4М—10Ar—4M—10Ar—И4 (2-х кам. с/п толщ. 32 мм c И-стек. и Аргон.) — 0,71 (м2•°С)/Вт, например, по протоколу испытаний КСК (с рамкой ПВХ) — 0,77 (м2•°С)/Вт.

Для стандартного с/п шириной 32 мм (4М—10—4М—10-4М) сопротивление теплопередачи увеличивается на 36%! Это уже значительное увеличение данного параметра. Кроме того, применение однокамерного с/п стандартной шириной 24 мм (4М—16—И4) позволяет существенно, на 26%, увеличить сопротивление теплопередаче даже по отношению к тому же 2-х камерному с/п (4М—10—4М—10-4М), при этом его стоимость всегда ниже.

Теперь можно увидеть, что самое НЕДОРОГОЕ окно, которое можно найти сегодня на Челябинском рынке пластиковых оконных конструкций и в нашей компании Евростиль легко выдерживает требования СНиП 23-02-2003 «Тепловая защита зданий», согласно которым сопротивление теплопередаче для окон и балконных дверей должно составлять от 0,6 (м2•°С)/Вт.

Действительно, пластиковый профиль СПК (согласно протоколам испытаний приведенное сопротивление теплопередачи для основных профилей 4-х камерной системы СПК составляет не менее 0,65 (м2•°С)/Вт с учётом установленного стального армирования) и с/п 4М—16—И4 (сопротивление теплопередачи 1-кам. с/п толщиной 24 мм с И-стеклом и рамкой ПВХ по протоколу испытаний КСК (Каменская стекольная компания) составляет 0,64 (м2•°С)/Вт) образуют оконную конструкцию, которая будет иметь сопротивление теплопередаче не менее 0,64 (м2•°С)/Вт.

А вот самое ОБЫЧНОЕ окно, которое можно найти сегодня на Челябинском рынке оконных конструкций, не соответствует требованиям СНиПа в большинстве случаев. Обычно выбираемый пластиковый 3-х камерный профиль имеет 0,6-0,69 (м2•°С)/Вт, а с учётом установленного стального армирования и еще ниже 0,55-0,64 (м2•°С)/Вт и обычно выбираемый с/п 4М-10-4М-10-4М (2-х камерный толщиной 32 мм с обычным стеклом) обладает сопротивлением теплопередаче 0,48 (м2•°С)/Вт, что дает итоговому окну сопротивление теплопередаче максимум 0,53 (м2•°С)/Вт.

Спасти окно с таким обычным двухкамерным с/п может только самый теплый пятикамерный оконный профиль компании LG Наusys L700 (монтажная глубина 70 мм), который имеет коэффициент теплопередачи 0,91 (м2•°С)/Вт с учётом установленного стального армирования и тогда такое окно будет иметь сопротивление теплопередаче 0,609 (м2•°С)/Вт. Хотя, конечно, такой профиль создан для с/п 42 мм, а лучше еще и с современными технологиями!

Из каких составляющих сделают самое ТЕПЛОЕ окно, которое можно найти сегодня на Челябинском рынке оконных конструкций и в нашей компании Евростиль?

В таком окне 30% защиты примет на себя система 5-ти камерного оконного профиля фирмы LG Наusys L700 , которая имеет коэффициент теплопередачи 0,91 (м2•°С)/Вт с учётом установленного стального армирования, а 70% защиты достанется с/п 4М—16Ar—4M—16Ar—И4 (сопротивление теплопередачи 2-х кам. с/п толщиной 42 мм c И-стеклом, рамкой ПВХ и заполнением Аргоном составляет 0,82 (м2•°С)/Вт), т.е. такое окно будет иметь сопротивление теплопередаче 0,85 (м2•°С)/Вт, что более чем на 40% превышает требования СНиП 23-02-2003!

Между стеклами чаще всего находится воздух, однако для улучшения характеристик сопротивления теплопередаче внутрь стеклопакета могут быть закачаны другие газы, имеющие меньшую теплопроводность — углекислый газ, аргон, ксенон, их смеси и др. Одноатомные газы с большим молекулярным весом резко снижают теплопроводность стеклопакета, но увеличивают его цену.

Важны даже не СНиПы, они исходят из реальностей сегодняшнего строительного рынка и указывают минимальные требования. При выборе дорогостоящего продукта длительного пользования, каким является окно пластиковое, важно оценить комфорт и экономию, которые получит Рачительный Хозяин дома с автономным отоплением, а также Настоящий Хозяин квартиры в которой станет, при осознанном выборе, значительно теплее, особенно осенью с холодными батареями и заметно в прохладнее в жару, особенно на южной стороне.

При строительстве многоэтажных зданий (например, 10-этажный жилой дом) замена обычных стеклопакетов на стеклопакеты с энергосберегающим стеклом дает суммарную экономию более 75000 рублей в год. Срок окупаемости на экономии отопления установки современного низкоэмиссионного стекла составляет 2,8 года.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Преимущества с/п с энергосберегающим И-стеклом

Во-первых, И-стекло отражает длинноволновые тепловые лучи в сторону их излучателя (то есть зимой в сторону квартиры, где работают отопительные приборы, а летом в сторону улицы, где находятся нагретые солнцем камни, асфальт и т.д.), что значительно снижает расходы на отопление зимой (до 60%) и на кондиционирование летом (до 30%). Иными словами, покрытие оставляет тепло там, где его больше (эффект термоса). Теплоизолирующая способность с/п с И-стеклом значительно выше по сравнению с обычным двухкамерным с/п.

Во-вторых, с/п с И-стеклом имеет значительный выигрыш и в отношении комфортности в помещении. Например, при наружной температуре —26 °С и температуре в помещении +25 °С, у обычного однокамерного с/п температура стекла на внутренней поверхности внутри помещения будет +5° С, у обычного 2-х камерного с/п +11 °С, а у однокамерного с/п с И-стеклом +14° С. А если «как себе» поставить 2-х камерный с/п максимальной толщины 42 мм (возможно при использовании профиля ПВХ монтажной глубиной 70 мм) с И-стеклом, то температура у окна будет больше +17 °С! Это означает, что режим нагрева помещения может быть изменен, т.к. отопительной системе нет необходимости компенсировать значительную «холодную» зону вблизи окна.

Зона вблизи окна из обычного остекления приводит к так называемым эффекту «сквозняка», связанным с заметной конвекцией холодного воздуха вблизи окна (этот же «сквозняк» легко почувствовать рукой, в которой держишь эскимо — даже находясь в квартире, где нет ветра, рука ощущает «холодный ветерок»). Следовательно, использование с/п с И-стеклом увеличивает полезную жилую площадь комнаты за счет комфортного приоконного пространства (в небольшой квартире можно придвинуть стол или кровать ближе к окну), а также не дает влаге осаждаться на стеклах, тем самым исключает появление конденсата.

В-третьих, вес такого однокамерного с/п на 10 кг на 1м.кв. с/п ниже по сравнению с 2-х камерным, что позволяет проектировать большие площади створок окон и дверей, значительно снижает нагрузку на фурнитуру створки Вашего окна и увеличивает срок ее эксплуатации.

В-четвертых, это И-стекло препятствует выгоранию обоев, обивки и предметов интерьера из-за отсутствия солнечного перегрева летом без использования штор или затемненных стекол. При этом прозрачность И-стекла сравнима с прозрачностью обычного стекла. Подобный набор свойств не доступен ни одному другому типу остекления на сегодняшний день.

Чтобы убедиться, что вы являетесь счастливым обладателем окон с таким стеклом, можно в сумерки поднести к окну пламя зажигалки и увидеть среди отраженных одно отражение с оттенком другого цвета как на рисунке.

Подытожив все вышесказанное, скажем, что установив у себя в доме пластиковые окна и двери производства нашей компании Евростиль с энергосберегающими стеклопакетами, вы экономите средства и создаете комфортные условия в помещении, а это хорошее настроение и здоровье у вас и ваших близких!

.

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Нормативные ссылки:

  • СНиП 2.01.07-85 Нагрузки и воздействия.
  • .
  • СНиП 23-03-03 Защита от шума.
  • СНиП 3.04.01-87 Изоляционные и отделочные покрытия
  • ГОСТ 30971-2012 Швы монтажные узлов примыкания оконных блоков к стеновым проемам.
  • ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
  • ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия
  • ГОСТ 10174-90 Прокладки уплотняющие пенополиуретановые для окон и дверей. Технические условия
  • ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний
  • ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию
  • ГОСТ 26433.0-85 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Общие положения
  • ГОСТ 26433.1-89 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления
  • ГОСТ 26433.2-94 Система обеспечения точности геометрических параметров в строительстве.
  • Правила выполнения измерений параметров зданий и сооружений
  • ГОСТ 26589-94 Материалы кровельные и гидроизоляционные. Методы испытаний
  • ГОСТ 26602.2-99 Блоки оконные и дверные. Методы определения воздухо- и водопроницаемости
  • ГОСТ 26602.3-99 Блоки оконные и дверные. Метод определения звукоизоляции.

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Теплопередача пластикового окна

Международный стандарт ISO 10077-1 дает минимальные величины коэффициентов теплопередачи рам окна ПВХ с двумя камерами и тремя камерами. Эти минимальные коэффициенты теплопередачи рам окон ПВХ – металлопластиковых окон – составляют соответственно 2,2 и 2,0 Вт/м2·К.


Рисунок 2 – Минимальный коэффициент теплопередачи окон ПВХ

Обычно рамы окон ПВХ имеют именно 3 камеры. Встречаются рамы ПВХ с 4-мя и даже 5-тью камерами, но они дороже обычных. Стандарт ISO 10077-1 указывает, что камерой окна ПВХ может считаться только полость шириной не менее 5 мм. Данных о коэффициенте теплопередачи рам таких «экзотических» окон ПВХ стандарт не приводит.

Рисунок 3 – Минимальная ширина камеры рамы окна ПВХ

А сколько это будет в цифрах?

Окно с однокамерным стеклопакетом

В РФ сопротивление теплопередаче стеклопакета ГОСТ 24866-99 нормирует в следующих пределах (имеются ввиду стеклопакеты общестроительного назначения):

  • для однокамерного стеклопакета сопротивление теплопередаче минимально равно 0,32 м² *°С/Вт;
  • двухкамерный стеклопакет, сопротивление теплопередаче – минимально 0,44 м²*°С/Вт.

Нетрудно подсчитать, что максимально допустимый коэффициент теплопередачи стеклопакета однокамерного

U1 = 1/0,32 =3,125 Вт/м²*°С;

Максимально допустимая теплопередача двухкамерного стеклопакета

U2 = 1/0,44 = 2, 273 Вт/м²*°С.

Понятно, что производителя интересует не сопротивление теплопередаче стеклопакета самого по себе, а то, как будет сопротивляться оттоку тепла всё окно в совокупности – стеклопакет, рама. Поэтому была введена еще одна величина: приведенное сопротивление теплопередаче стеклопакета. Рассчитывают ее по следующей формуле:

Ro = [(1-B)/Rp + B/Rsp]-1,

Утечка тепла через стеклопакет и через раму

где Ro – приведенное сопротивление теплопередаче стеклопакета;

B – отношение площади остекления к площади всего оконного проёма;

Rp – сопротивление теплопередаче профиля;

Rsp – сопротивление теплопередаче стеклопакета.

Теплопередачи алюминиевой рамы

При заданной длине терморазрыва d максимальная величина коэффициента теплопередачи алюминиевой рамы по формуле достигается при Ai = Aid и Ae = Aed (см. рисунок 6).

В этом случае

Uf = 1/ (0,13 + Rf + 0,04) = 1/(Rf + 0,17)

Алюминиевая рама без терморазрыва

Для алюминиевой рамы без терморазрыва принимается Rf = 0, что дает

Uf = 1/(0 + 0,17) = 5,9 Вт/м2·К

Алюминиевая рама с терморазрывом d = 19 мм

Для полиамидной термовставки 24 мм

1) Минимальная величина сопротивления теплопередаче алюминиевой рамы (по сплошной линии графика рисунка 7):

Rf = 0,18 м2·К/Вт

2) Максимальная величина сопротивления теплопередаче алюминиевой рамы (по пунктирной линии графика рисунка 7):

Rf = 0,30 м2·К/Вт

3) Максимальный (худший) коэффициент теплопередачи рамы с d = 19 мм:

Uf = 1/(0,18 + 0,17) = 1/0,35 = 2,9 Вт/м2 К.

4) Минимальный (лучший) коэффициент теплопередачи рамы с d = 19 мм:

Uf = 1/(0,30 + 0,17) = 1/0,47 = 2,1 Вт/м2 К.

Алюминиевая рама с терморазрывом d = 28 мм

Для термовставки 33 мм

1) Минимальная величина сопротивления теплопередаче алюминиевой рамы (по сплошной линии графика рисунка 7):

Rf = 0,22 м2·К/Вт

2) Максимальная величина сопротивления теплопередаче алюминиевой рамы (по пунктирной линии графика рисунка 7):

Rf = 0,35 м2·К/Вт

3) Максимальный (худший) коэффициент теплопередачи рамы с d = 28 мм:

Uf = 1/(0,22 + 0,17) = 1/0,39 = 2,6 Вт/м2 К.

4) Минимальный (лучший) коэффициент теплопередачи рамы с d = 28 мм:

Uf = 1/(0,35 + 0,17) = 1/0,52 = 1,9 Вт/м2 К.

Теплопередача деревянного окна

На рисунке 4 приведен график зависимости минимального коэффициента теплопередачи рамы деревянного окна, во-первых, от типа древесины (мягкая или твердая) и, во-вторых, от толщины рамы.

Рисунок 4 – Коэффициент теплопередачи деревянных рам 1 – твердые породы (700 кг/куб. м и 0,18 Вт/м К); 2 -мягкие породы (500 кг/куб. м и 0,13 Вт/м К)

Для типичной толщины деревянного окна 50 мм коэффициент теплопередачи рамы составляет для мягких пород 2,0 Вт/м2 К, а для твердых пород – 2,2 Вт/м2 К. С увеличением толщины рамы за 150 мм коэффициент теплопередачи рамы приближается к единице.

Теплопередача стеклопакетов: что это такое и какими коэффициентами с нею бороться

Главный показатель стеклопакета – его способность удерживать тепло в помещении . В отзывах пользователей пластиковых и пр. окон часто можно встретить чисто субъективные характеристики: «Поставили окна ПВХ, сразу стало теплее»; «С пластиковыми стеклопакетами даже зимой жарко» и т.п.

«Как правильно выбрать пластиковое окно и профиль?» – эта статья подскажет вам не только какой профиль будет самым красивым, но и какое окно будет самым тёплым

Почему лопаются стеклопакеты? Не от мороза ли? И что надо предусмотреть во избежание данных ЧП? Ответы на эти вопросы ждут вас на нашем сайте

Как лучше остеклить балкон или лоджию? Чтобы там было тепло и уютно? Советы бывалых домохозяев ищите по ссылке: https://oknanagoda.com/balkony-lodzhii/osteklenie/luchshe-osteklit-balkon.html

А есть ли какие-либо объективные критерии, характеризующие способность стеклопакета противостоять оттоку тепла из помещения? О них мы и расскажем далее в статье на нашем сайте.

Теплопередача окна по ISO 10077-1

Самыми надежными методами для определения коэффициента теплопередачи рам окон и окон в целом являются численные методы (например, метод конечных элементов, метод конечных разностей или метод граничных элементов) в соответствии с указаниями стандарта ISO 10077-2. Кроме того применяют стандартизированные экспериментальные методы на основе измерения тепловых потоков через элементы окна и окно в целом.

Стандарт ISO 10077-1 предназначен для оценки коэффициентов теплопередачи окон различной конструкции при отсутствии данных численного расчета и экспериментальных данных.

Для простого глухого окна – окна с рамой без створок и импостов (горизонтальных и вертикальных перекладин) – формула для вычисления коэффициента теплопередачи окна согласно стандарту ISO 10077-1 упрощается до следующего вида:

где: Ag – площадь светопроникающей части окна; Af – площадь рамы (проекция на вертикальную плоскость); lg– длина периметра светопроникающей части окна; Ψg – линейная теплопередача (на стыке между рамой и светопроникающей частью окна).

Окна для энергоэффективных зданий

Запись дневника создана пользователем evraz, 02.05.14 .322,

Окна для пассивного дома — высочайшее качество светопрозрачных строительных конструкций

Пояснения к рисунку: Ug — коэффициент теплопередачи остекления (Вт/м2К); R0 — сопротивление теплопередаче, (м2ºС)/Вт; g — коэффициент общего пропускания солнечной энергии. Данные температуры на внутренней поверхности рассчитаны в таблице для наружной температуры -10 °C и внутренней 20 °C.

На рисунке представлено развитие остеклений: от одинарного остекления (крайнее слева) до остекления, соответствующего стандарту пассивного дома (крайнее справа). Только у остеклений такого качества даже в самые суровые морозы будут теплые внутренние поверхности. Незначительные потери энергии и улучшенный комфорт являются преимуществами остекления, соответствующего стандарту пассивного дома.

Температурное расслоение воздуха в помещении при использовании окон стандарта пассивного дома не наблюдается, при обычных же окнах оно значительно. Следовательно, отопительный прибор может быть размещен у внутренней стены, а не под окном, и, несмотря на это, будет достигнут оптимальный комфорт.

Тепловизионный снимок наружных стен пассивного дома с внутренней стороны. Все поверхности теплые: оконная рама (коробка), рама оконной створки и остекление. Даже по краю остекления температура не опускается ниже 15 °C, см. фото. (Фото: PHI, пассивный дом в г. Дармштадт, р-н Кранихштайн; в доме отопительные приборы стоят у внутренней стены)

Для сравнения окно в старом доме с «изолированным остеклением»: здесь температуры на поверхности составляют в среднем меньше 14 °C. Наглядно видны все дефекты монтажа — тепловые мосты, особенно на бетонной перемычке. (Фото: PH)

Для сравнения: двойное остекление с низкоэмиссионным покрытием (здесь показана установленная в наружную стену остекленная дверь) уже имеет более высокие температуры на внутренней поверхности (16 °C в середине). На снимке бросается в глаза плохая изоляция обычных оконных рам. Такие высокие теплопотери и низкие температуры на внутренней поверхности сегодня не допустимы. Оконные рамы стандарта пассивного дома имеют значительно лучшие характеристики.

Ни одна другая строительная конструкция не развивалась так стремительно в части качества теплозащиты как окно. Коэффициент теплопередачи Uw существующих на рынке окон уменьшился за последние 30 лет в 8 раз! (Или соответственно сопротивление теплопередаче R0увеличилось в 8 раз!)

Время заменять окна с одинарным остеклением

В начале 70-х годов большинство окон в Германии были с одинарным остеклением

. Коэффициент теплопередачи таких окон составлял примерно 5,5 Вт/м2°C, ежегодная потеря тепла через 1 м2 окна равнялась приблизительно расходу энергии в размере 60 литров жидкого топлива. Однако не только потери тепла являются высокими. Из-за плохой изоляции холод проникает на внутреннию поверхность окна. Нередко температура там составляет ниже 0 °C и образуются ледяные узоры. Плохая теплоизоляция связана с низким комфортом внутри помещений и высоким риском повреждения оконных конструкций.

Статья по теме: Почему на пластиковых окнах образуется конденсат

«Изолированное» остекление — улучшенная промежуточная стадия

Немного лучше были так называемые «изолированные стекла»,

т.е. стеклопакеты с двумя стеклами. Их начали устанавливать в новостройках и модернизированных зданиях после первого нефтяного кризиса. Между двумя стеклами находился изолированный слой воздуха. Коэффициент теплопередачи был снижен таким образом до 2,8 Вт/(м²°C). Это означает, что по сравнению с одинарным остеклением потери тепла были уменьшены вполовину. Температура на внутренней поверхности стекла изолированных окон в самые холодные дни составляет 7,5 °C. Ледяные узоры больше не образуются, но поверхности окон имеют некомфортные температуры и в холодную погоду они влажные, т.к. точка росы ниже нормы.

Двойное остекление с низкоэмиссионным покрытием и заполнением стеклопакета инертным газом — это намного лучше, но еще недостаточно хорошо

Значительным достижением стало применение очень тонких металлических теплоотражающих покрытий, нанесенных на стекла с внутренних сторон межстекольного пространства стеклопакетов (английское название: покрытие — «low-e»

). Благодаря этому тепловое излучение (теплообмен излучением) между стеклами было сильно снижено. Kроме того традиционное заполнение стеклопакета осушенным воздухом было заменено менее теплопроводным инертным газом, например аргоном. С приходом на рынок такие
«теплоизоляционные остекления»
применялись на основании Постановления по тепловой защите от 1995 г. как стандартный продукт почти во всех новостройках и модернизированных зданиях. Интересным фактом является то, что подорожание такого остекления в связи со значительным улучшением его качества не произошло. Такое стандартное окно с деревянной или пластиковой рамой и oбычным соединением по краю остекления имеет коэффициент теплопередачи между 1,3 и 1,7 Вт/м2К. Таким образом, потери тепла по сравнению с обычными стеклопакетами с двумя стеклами еще раз вдвое уменьшились. Средняя температура на внутренней поверхности составляет даже при сильном морозе приблизительно 13 °C. Однако ощущение холодного воздуха у окна остается еще заметным и не исключено температурное расслоение воздуха в помещении, вызывающее дискомфорт.

Тройное остекление с двумя низкоэмиссионными покрытиями и заполнением инертным газом — оптимальное качество для перспективного строительства и модернизации

Прорывом в энергоэффективном строительстве в Германии стало создание теплоизолированного тройного остекления. В таком стеклопакете две камеры с заполнением инертным газом и два низкоэмиссионных покрытия (low-e), коэффициент теплопередачи U составляет от 0,5 до 0,8 Вт/м2°C. Если необходимо достичь таких же показателей не только на стекле, но и на всем окне, то для этого нужно применить хорошо теплоизолированные оконные рамы, а также теплоизолированное соединение по краю остекления. В результате получается «теплое окно» или «окно стандарта пассивного дома»

. Годовые теплопотери такого окна для условий Германии снижаются до менее 7 литров жидкого топлива на квадратный метр оконной поверхности, что составляет одну восьмую от первоночального показателя. Если учитывать то, что попадающие через окно стандарта пассивного дома солнечная энергия значительно уменьшает теплопотери даже в зимнее время, то чистые потери через окно такого качества пренебрежимо малы. Кроме того, теплоизолированное тройное остекление «окупается» сегодня в Германии уже при покупке одного окна исключительно засчет достигнутой экономии энергопотерь.

Это не случайность, что чистые энергопотери в пассивном доме пренебрежимо малы — так малы, как и в других строительных конструкциях с хорошей теплоизоляцией. Качество теплоизоляции наружной оболочки (с коэффициентом теплопередачи приблизительно 0,15 Вт/м2К) точно соответствует хорошим теплоизоляционным свойствам окон стандарта пассивного дома. Благодоря качеству этих двух составляющих в целом возможно строительство пассивных домов во влажном и холодном климате Средней Европы. Результатом этого является дом, в котором тепло и комфортно, и в котором благодаря возврату тепла из вытяжного воздуха создается значительная экономия на отопление.

Окна стандарта пассивного дома отличаются не только малыми теплопотерями, но и также улучшенным комфортом. При сильном морозе температура на внутренней поверхности окна не опускается ниже 17 °C. В этих условиях больше не ощущается «холодного излучения» от окна. Кроме того, в комнате устраняется некомфортное температурное расслоение воздуха, даже тогда, когда под окном не стоит нагревательный прибор. Конечно, при этом должны быть соблюдены и другие критерии пассивного дома, как, например, герметичность и отсутствие тепловых мостов. В этих условиях гарантирован температурный комфорт в помещении, независимо от вида притока тепла. Это стало возможно благодаря улучшенным окнам.

Окна стандарта пассивного дома — это высококачественные продукты, которые были разработаны более чем 40 предприятиями и в настоящий момент продаются на рынке. Экономия энергии по сравнению с обычными окнами составляет не единичные проценты, а больше 50%. Благодаря этим окнам можно экономить не только энергию и наличные деньги, но и защищать окружающую среду. Окна стандарта пассивного дома являются примером эффективной техники, которая была создана в Европе и, производство которой создает рабочие места в регионах, а также одновременно ослабляет зависимость от энергетических рынков.

по материалам passiv-rus ru

Пластиковая дистанционная рамка

Пластиковая дистанционная рамка – это одна из последних разработок в области оконных технологий. Она обладает коэффициентом теплопроводности 0.16 – 0.20 Вт/кв.м∙°С (для сравнения, алюминиевая 200 – 220 Вт/кв.м∙°С). При ее использовании исключается образование термического мостика по краю стеклопакета.

Как и алюминивая рамка, пластиковая дистанционная рамка предназначена для выполнения следующих функций:

  • обеспечение в стеклопакете определенных расстояний между стеклами,
  • обеспечение первичного каркаса,
  • обеспечение камер для осушителя.

Так как краевые зоны стеклопакета — это наиболее проблемные зоны, связанные с потерями тепла, то применяя пластиковую дистанционную рамку, можно значительно снизить риск появление конденсата. Это достигается за счет величины коэффициента теплопроводности твердого пластика (0.16 – 0.17 Вт/кв.м∙°С), из которого выполнена пластиковая дистанционная рамка. По сравнению с алюминиевой дистанционной рамкой, потери тепла снижаются примерно в 10 раз.

Еще одним показателем качества соединения стеклопакета является прочность и долговечность. При применении пластика, линейное расширение рамки уменьшается в 3-3.5 раза, по сравнению с алюминием. При этом устраняется излишнее напряжение в угловых зонах, а это значительно продлевает службу стеклопакета.

Теплопередача алюминиевой рамы

Терморазрыв алюминиевой рамы

На рисунке 5 показаны основные конструкционные характеристики алюминиевой рамы с терморазвязкой в виде полиамидных вставок.

Рисунок 5 – Алюминиевая рама с полиамидными вставками: 0,2 < λ ≤ 0,3 Вт/(м2 К) b1 + b2 + b3 + b4 ≤ 0,2 bf

Коэффициент теплопередачи оконной рамы из алюминиевых профилей с терморазрывом зависит от:

  • коэффициента теплопроводности материала терморазрыва;
  • длины терморазрыва, d, то есть минимального расстояния между наружным и внутренним алюминиевыми профилями;
  • ширины терморазрыва, b1+b2+b3+b4;
  • отношения общей ширины терморазрыва (b1+b2+b3+b4) к ширине рамы bf.

Длина терморазрыва

Производители алюминиевых окон обычно декларируют длину (или ширину) полиамидных вставок, которые образуют терморазрыв в алюминиевых профилях рамы. Однако эти полиамидные вставки имеют заделку в алюминиевых профилях не менее 2,5 мм с каждой стороны. Поэтому, если применяются полиамидные вставки, например, длиной 34 мм, то они обеспечивают эффективный терморазрыв в лучшем случае длиной всего 29 мм.

Формула

Формула для вычисления коэффициента теплопередачи рамы алюминиевого окна выглядит следующим образом:

где Af,i /Af,di – отношение площади проекции внутренней поверхности рамы на плоскость окна к полной внутренней поверхности рамы (рисунок 6); Af,e /Af,de – отношение площади проекции наружной поверхности рамы на плоскость окна к полной наружной поверхности рамы (рисунок 6); Rsi – сопротивление теплопередаче внутренней поверхности рамы (прослойки воздуха на внутренней поверхности рамы), (м2 ·К)/Вт; Rse – сопротивление теплопередаче наружной поверхности рамы (прослойки воздуха на наружной поверхности рамы), (м2·К)/Вт; Rf – сопротивление теплопередаче сечения рамы, (м2·К)/Вт.


Рисунок 6 – Параметры формы алюминиевой рамы, которые влияют на величину ее коэффициета теплопередачи

Сопротивление теплопередаче алюминиевой рамы

Сопротивление рамы алюминиевого окна без терморазрыва принимается равным нулю: Rf = 0.

Минимальное сопротивление алюминиевой рамы в зависимости от длины терморазрыва d принимается по сплошной линии графика на рисунке 7.


Рисунок 7 – Величины Rf для алюминиевой рамы с терморазрывом

Заштрихованная область на рисунке 7 выше сплошной линии соответствует величинам сопротивления теплопередаче рамы, полученным для различных алюминиевых окон при различных условиях в различных европейских странах. Поэтому верхнюю линию надо понимать как практический максимум сопротивления теплопередаче алюминиевых рам для заданных величин терморазрыва d.

Основные виды стеклопакетов

Стеклопакет (СП), являясь основной частью окна, конструктивно состоит из нескольких стекол, соединенных металлическими (промежуточными) рамками. Промежуток между стеклами называется камерой.

Чаще всего используются три основных вида стекольных пакетов:

  • однокамерные — два стекла (внутреннее и наружное);
  • двухкамерные — три стекла (внутреннее, наружное и промежуточное);
  • трехкамерные — четыре стекла (внутреннее, наружное и 2 промежуточных).

Толщина используемых стекол варьируется от 4 до 6 мм. Для остекления объектов с повышенными требованиями к прочности (большие ветровые нагрузки) могут применяться стекла толщиной 8-10 мм. Промежуток между стеклами может варьироваться — от 8 до 36 мм. Диапазон толщин стеклопакетов составляет от 14 до 60 мм.

СТП самого стекла сравнительно мало ввиду его большой теплопроводности. Для уменьшения теплопотерь межстекольное пространство, заполняется воздухом или инертным газом (аргоном Ar, криптоном Kr, азотом N2). Газонаполненные камеры дают основной вклад в повышение СТП стеклопакета Rсп. Существенно повысить значение Rсп удается также с помощью создания вакуума в камере, но это приводит к резкому удорожанию конечного изделия.

Алюминиевые профили для окон и дверей

Европейский стандарт EN 14024 устанавливает два типа терморазрыва для металлических профилей, в том числе, для алюминиевых профилей (рисунок 1).

Рисунок 1 – Два типа терморазрыва в алюминиевых профилях

Первая технология изготовления алюминиевого профиля с терморазрывом заключается в том, что две противоположных кромки полиамидного профиля вставляют в специальные пазы алюминиевых профилей, наружного и внутреннего. Затем производится закатка кромок этих пазов, что обеспечивает прочное соединение термомоста с каждым из алюминиевых профилей, а алюминиевых профилей друг с другом.

Вторая технология изготовления алюминиевых профилей с терморазрывом включает заливку жидкого полиуретана в алюминиевый профиль, который имеет специальные пазы. Затем, после затвердевания полиуретана, тонкие «перепонки» между наружной и внутренней частью алюминиевого профиля удаляют – вырывают или фрезеруют – и получается алюминиевый профиль с терморазрывом.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]